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PREFACE 
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1.0 INTRODUCTION 

The usefulness of holography as a data-gathering tool is determined primarily by the 
accuracy with which data can be reconstructed from the hologram. Various reconstruction 
characteristics have been studied extensively. Some of these aspects are the image intensity 

distribution (Refs. ! and 2), resolution (Refs. 3 and 4), aberration (Refs. 5 and 6), focal 

tolerance (Refs. 7 and 8), and film effects (Refs. 9 and 10). Because all of these affect the 
clarity and acuity of the images and, hence, their measurement, it is not surprising that a 

single, direct, universally applicable definition of information resolution within the images is 

not available. The ubiquitous Rayleigh resolution, though simple in concept and 
application, does not correlate with experimentation any better than in that it implies an 

upper boundary on the resolution. The Sparrow resolution requirement correlates more 
highly with observed results; however, its physical interpretation is less clear. Attempts to 

define simple resolution seem to be thwarted by the facts that line images are more easily 
recognized than circular images of comparable diffracting energies and that line images with 
line widths considerably narrower than the diameters of the smallest observable circular 
images are easily detected. 

More meaningful resolution information can be obtained by applying transfer function 
and linear systems theory to optical systems. This has also been applied to holographic 

image analysis (Refs. l I and 12). The power of the technique resides in the superposition 

principle of linear systems (i.e., the response of the system to any one excitation is not 
affected by responses to other excitations). From this it follows that if the transform 
characteristics of the system for an impulse function are known, then the output response to 

a complicated input function is the superposition integral (the convolution) of the impulse 
function over the input function domain. Likewise, the Fourier transform of the output 
function is the product of the Fourier transform of the input function and the transfer 
function. In terms of optics, the impulse function is a point radiation source. By obtaining 
the transform of the optical system to the point radiation source, which is the point spread 
function, the essential features of the subsequent image characteristics can be found. A 

related and more easily experimentally obtainable transfer function is the line spread 
function resulting from a line radiating source. 

Holographic systems are coherent imaging systems and, as such, are linear in the 

complex amplitude of their transmission and nonlinear in the intensity distribution. The 
conventional optical transfer and modulation transfer functions of the linear systems for 
incoherent imaging characteristics are not applicable to coherent images. The transfer 

function of coherent images cannot be determined, in general, from a Fourier transform of 
the intensity of the spread function. However, for the in-focus image of an idealized 

holographic reconstruction, as described below, the intensity distribution is the same as that 
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for a conventional lens imaging system. This suggests that when only the in-focus image 

intensity of the reconstruction of a point or line source is considered, a point spread or line 
spread relationship is obtained that may be used to infer the resolution of the holographic 

systemr From this view point, the linear systems theory is applied in correlating the intensity 

distribution of a known point or line radiation source with the intensity distribution that 
results from the reconstructed image of that source. The transfer function derived in this 
linear systems approach is not one whose convolution with an arbitrary input function will 

determine the output function. Rather, it describes the deterioration in the image of the 

original radiation source. 

Thus, resolution of a holographic system is inferred from the spread function derived by 

using a linear systems approach. This report describes the process of arriving at the results. 

The major sections of the report are (1) an outline of the theoretical point and line spread 
function of a holographic system, (2) a discussion of linear systems theory to allow a 

thorough description of a method for obtaining the line spread functions, (3) the 
experimentally obtained line spread functions for a holographic system, and (4) a 
comparison of theory, experiment, and observed resolution of holographic images. 

2.0 HOLOGRAPHIC IMAGE OF A POINT AND A LINE SOURCE 

A mathematical model of the reconstructed image of a point source ot' radiation can be 

formulated through consideration of the holographic process in its component parts. The 

geometric parameters of the system are shown in Fig. I. The (x, y,) planes with i = I, 2, and 3 
are, respectively, the point source plane, the hologram plane (for both recording and 
reconstruction), and the reconstructed image plane. For simplicity, it is assumed that the 
reference beam is collimated and that the reconstruction beam is the same except that its 
angle is - ~,. The point source is assumed to be at the origin of the (xl, Yh) plane. 

x 2 
y x I Y2 Y3 

Reference 
Beam 

Potn~  o r  H o l o g r a m  R e c o n s t r u c L e d  
l ,±ne S o u r c e  P l : t no  Image P lan( -  
P l a n e  

Figure 1. Definition of the holocamera parameters. 
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The point radiation source is described by Green's function (A/s0 exp (iks0, where 
k = 27r/~, and X is the wavelength. The holographic recording is the interference between the 
Green's function and the reference wave. With the binomial expansion sl -= zl + l/2(r2/z0 
and the assumption that the point source and reference wave have the same amplitude, A, 
then the intensity in the hologram plane is given by 

When ~k = 0, the intensity distribution is similar to a Fresnel zone plate. 

The reconstructed amplitude field, UR, is the Fresnel diffraction obtained from the 
hologram, 

i 
UR = - X  UII " ~ dx2dy2 (2) 

a p e r t u r e  

where UH is the amplitude field transmitted by the illuminated'hologram. UH is given by the 
product of the incident illuminating field and the complex transmittance of the hologram. If 
phase shifts caused by the film emulsion thickness variations are neglected, then the 
hologram's complex amplitude transmittance can be approximated by a linear mapping of 
the complex amplitude during exposure, provided that the exposure level is properly chosen 
(Ref. 11). Using the binomial expansion of s2 and the exponential expansion of the cosine in 
Eq. (l), and changing to cylindrical coordinates allows the reconstructed amplitude field to 
be written as 

3 fol I;il = j~l= Kj J o ( v p ) e x p ( i " j p 2 ) p d p  (3) 

where 

v = k r  3 R / z 2  

u 1 = x 2 k s i n  

u 2 = (k112/2) ( l /z ]  + 1../z 2) - 2kx 2 sin 

"3 = (k t : t z /2 )  ( l . /z~ - t / ~ 2 )  

(4) 

R is the maximum radial dimension of the hologram (i.e., the effective aperture of the 
hologram). The K i incorporates constants that do not influence the spatial distribution of 
intensity in the reconstructed images. The three integrals represent, successively, the 
reconstruction of the bias on the film, the virtual image, and the real image. Because of the 
angle if, the images are spatially separated. 

7 



A EDC-TR-80-41 

The basic integral of the reconstruction process 

I 
IJ = f .I,,(~,p) exp (i u p 2 ) p d p  

O 

(5) 

can be solved by using Lommel functions (Ref. 13). The intensity obtained from UU* can be 
graphically represented by a set of isophote diagrams (Refs. 13 and 14) in which contour 

lines of constant intensity near the focal volume of the optical system are plotted on a (u, v) 
coordinate system. The importance of these isophote diagrams is that the solution they 

represent was obtained in analyzing the three-dimensional light distribution near the focus 

of a diffraction-limited lens. In other words, for the above assumptions, the intensity field in 

the focused region of the reconstruction of the hologram of a point source is identical in 
form to the intensity field near the focal volume of a diffraction-limited lens. Therefore, the 

focusing characteristics attributed to the lens may equally well describe the holographic 

reconstruction. In particular, 

1. The fraction of the total energy that falls within a given area about the 
optical axis for any constant u is the same for point images obtained by lens 

projection and for holographic reconstruction. 

2. The phase distribution near focus is the same in both cases (i.e., in the focal 

waist the phase surfaces propagate like plane waves). 

The similarity of lens and holographic images shows that the physical properties of either 
image (under appropriate conditions, of course) do not reveal which system was used to 
make the image. Indeed, from this standpoint, holography is simply another imaging 

system; its unique properties relate to image storage capabilities but not to the image 

characteristics themselves. 

The point spread function is the image intensity when the focusing condition u = 0 is 

satisfied. For the normalized real image, this intensity is the familiar Airy pattern associated 

with diffraction from an aperture of radius R, 

l,.= c. = I 1 (kr 3 Ii./z 2 ) / ( k r  3 II..'/z2) (6) 

The multiparametric nature of the point spread function is worth noting. 

in principle, the point spread function is the trace that results from scanning the image 
with a suitably small pinhole. Experimentally, it is difficult to obtain because the energy 
passing through the pinhole is insufficient for accurate measurement. On the other hand, if 
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a line source of radiation is imaged, the image may be satisfactorily scanned with an 
elongated slit parallel to the image axis. 

The derivation of the image intensity distribution which is the line spread function 
follows the same form as for the point spread function. For a line source of radiation along 
the Yl axis, the reconstructed real image amplitude assumes the form 

where now 

f 
l .1 

UIi = K e x p  (i u x : ~ ) e x p  (i v x 2) dx  2 (7 )  
! 

v = - k , ~  3 I . / z , ~  

and 

t, = ( k  1 , 2 . " 2 ) ( I . : z  - ] . / z l )  
- 2 ( 8 )  

and L is half the width of the hologram in the x2 direction. Again, the line spread function is 
the image intensity when the focusing condition u = 0 is satisfied. The normalized intensity 
is 

i_:o= k,,s ] (9) 

Comparing the widths of the line spread function to the point spread function, for equal 
arguments, at their respective first zero values shows x3 = 0.82 r3. Consequently, for 

holograms of the same size, objects with linear features are resolved with a spread function 

narrower than that of objects with circular symmetry. This is experimentally verifiable: 
Linear images are much easier to recognize in the reconstruction than circular images. 

3.0 LINEAR SYSTEMS 

The theoretical and experimental foundation of the application of the line spread 

function to the analysis of photographic systems has been developed extensively in an 
excellent series of articles by Lamberts et al. (Refs. 15 and 16), Perrin (Refs. 17 and 18), and 
Higgins et al. (Ref. 19). The Fourier transform technique of optical image evaluation (i.e., 
the transfer function) is described at length by Smith (Ref. 20). 

The spread function and transfer function techniques are applied to a holographic 

system by first considering the entire holographic system - -  the diffraction phenomenon, 

the holographic recording, the reconstruction diffraction, and the recording of the 

9 
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reconstructed image - -  as a "black box" optical device that has the useful property of 

transmitting an image from one place to another. The actual mechanism of the image 
transmission is ignored, and comparisons are made only between the " input"  image and the 
"ou tpu t"  image intensity distributions. In this manner, the question of coherent or 
incoherent imaging does not arise. For any given input to the black box, there exists a 

corresponding output whose facsimile fidelity has been degraded by the transmission 
process. For example, the energy in the transmitted image of a step function input such as an 
illuminated knife edge does not have a step function distribution, but, rather, the energy 
"spreads" so that a portion falls into geometrical shadow of the step function. 

To pursue the application of the linear systems techniques it is appropriate to note 

several properties of linear optical systems. An image function l(xi, Yi) is correlated with the 

object function O(xo, Yo) by the superposition integral (Ref. 11) 

l ( x . , ' ¢ , ) - -  J J ' O ( x o , ~ . o J S ( x i ,  Yi : Xo, Yo)dxndy o (10) 
~ O Q  

where S(xi, y~; Xo, Yo) is the system's response to an impulse function. With unit 
magnification, the space described by (Xo, Yo) is the same as the (xi, y,) space, and the object 
and image can be compared point for point. When S is dependent only on the coordinate 

differences (x, - xo) and (Yi - Yo), the linear system is space invariant. Then, 

lfxi, Yi) = f f  O(xo ' ?o )S (x~-x , ,  : ) ' i-},~)dxod.vo (11) 

which has the form of a two-dimensional convolution of the object function with the 
impulse response function. The condition of space invariance requires that the system 

operating on a moving point object result in a moving point image that does not change in its 

mathematical form. This requirement demands an aberration-free optical system. The 
convenience of the application of the convolution integral makes it desirable to use this 

technique with more general cases than those which are aberration free. This is obtained, in 
principle, when the object field domain is restricted sufficiently so that the image field is 
satisfactorily space invariant. Several adjacent domains may comprise the object field, and 
each domain may have associated with it a different impulse response. 

Equation (11) may also be written as 

I(xi,)'~) = f f o ( x i - X o  ; Yi-Y,,)S(xo'Yo)C]xodYo (12) 

10 
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by making a simple coordinate transformation. This form of the convolution is applied in 
the subsequent derivations. 

When the spread function of an optical system is known, the entire transformation 
characteristics can be derived for any image obtained with the system. For example, if the 
object function is a point radiation source, the resolution of the system is often defined as 
the halfwidth of the spread in the resulting image. If, on the other hand, the system is 
comprised of multiple subsystems, the spread function of the entire system is obtained by 
convolving the spread functions of the subsystems 

S(x,))  -= f f s  1 (x ' ,y ' )  S,,_(x-x" ; .v- .v ' )dx 'dv ' .  (13) 

Conversely, the spread function of a subsystem can be found with deconvolution process. 
Since this is usually very difficult to perform mathematically, it is advantageous to use the 
Convolution Theorem by which the Fourier transform of the convolution of two functions 
in dimensional space is equivalent to the multiplication of the Fourier transforms of each of 
the two functions in spatial frequency "space." Thus, spatial deconvolution is the 
operational equivalent of dividing by the correct Fourier transform and finding the inverse 
Fourier transform of the result. For example, 

(14) 

The nature of the spread function S(x, y) is further revealed by the Fourier analysis 
techniques. The Fourier transform of an input field O(x, y) is the complex field described by 

, t  = f f  O(x, y) exp I - i  2rr (xf x + YfY)I dx dy (15) 

The conjugate coordinates are the space coordinates (x, y) and the spatial frequency 
coordinates (fx, fy). The components of the Fourier expansion of the Fourier transform are 
characteristically sinusoidal and can be expressed by 

K(r X, f , . )=.   o(fx, fv)cxp 2,', (,,f x + ] .  (16) 

l l  
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When this component wave is itself the input function of the linear system, the important 

result 
¢,¢ 

I ( . X i ,  .'!,r I ) = f f S ( x o ,  yo) Ko(fx, fy) exp Ei 2rr fx(Xi- x,,) ~- i 2r, fv (Yi-  Yo'] dxod, o 

--I,:ocf,,, r , ) ] ,  : 

f f  S(xo, y~,) exp [ -  i 2~r (Xo f., ~ ,' ¢, f,.)] dxo dY., 

K , ,  ' f x '  - , " " 1 (17) 

is obtained. The image field is simply the object field modified by the Fourier transform of 
the spread function, 

Ko,,, p,,t (fx, t . ) =  "~f{S ("o, ." o)} K,.p,., (f,. r,),. ( 1 8 )  

The problem of finding S(x, y) is now essentially the same as the problem of finding 

YlS(x, y) l. 

This result, carried further in the following example, leads to the experimental method of 
finding the spread function. Consider a one dimensional sinusoidal object field given by 

0(xo,~o ) - 0(x o) = ] i-acos(2trx of x) (19) 

where a _ 1. The image field resulting when Eq.(12) is applied is 

I(xi) -: f ~  S(xo)dx o 

)- .t, cos (2~' x, f,,:) f ~  S(,, o) cos (2v x o f~) dx,. (20) 

~ a sin (2~x, f x ) £ ~  S(xo) sin (2~ Xo fx) 'lx o 

The integrals each have numerical values that will be designated, respectively, Mo, M,., and 
Ms. Clearly, the M¢ and Ms integrals are the cosine and sine components of the Fourier 
transform of the spread function. These are considered to be independent variables; 

therefore, with substitution of the definitions 

.M,. = .~.i cos 0 and ~'1 = M sin 0 (21) 

12 
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Eq. ( i 8) becomes 

I(x i) = .X'i o + ~ I M c o s ( 2 r t x  f x - O )  (22) 

The output  differs from the input by the modulation,  M, and a phase angle, 0. If S(xo) is 

symmetrical, then the sine integral is zero, Ms = 0, and the phase angle is also zero. 

Attention can be focused on either Mc or Ms by requiring the argument (2~r xi fx) to cause the 

cosine or sine function modifying the integrals to he zero. Choosing sin (2~r xi ix) = 0 and 

assuming further that normalization is chosen so that Mo = 1 and a = 1 produces 

=([,(x)]  .... (23) 

This is similar to the Michelson visibility function. [l(Xi)]max is obtained for x, = 0 which is 

the same condition as requiring the impulse response function to be centrally located over a 

maximum amplitude value of  the sinusoidal field. Similarly, [l(Xi)]min is obtained when a 
minimum of  the sinusoidal field is centered over the impulse response function. 

An equation structurally the same as Eq. (23) results for Ms when cos (2 ~r xi fx) = 0. 

Now the maxima and minima of  the output function correspond to centering the impulse 
response function such that the slope of  the input field is maximum and minimum. 

The Fourier transform of  the spread function (in one dimension, to follow the above 
example) is 

= M c + i M s (24) 

= . + . exp i tan "1 

By definit ion [Mc 2 + Ms2] I;2 is the modula t ion transfer funct ion,  MTF,  while 

exp [i t an -  i (Ms/Me)] is the phase transfer function, PTF'. The MTF represents the relative 

amplitude by which different spatial frequencies are transmitted through the system 

(Ref. 19). The PTF describes the displacement of  wavefronts that sinusoidal distributions of  
various spatial frequencies suffer in transmission through the system (Ref. 20). 

The Fourier transform of  the spread function of  an optical system is known as the optical 

transfer function, OTF, of the system. Because the Fourier transform pair (i.e., the Fourier 

13 
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transform and the inverse Fourier transform) are related such that knowledge of one implies 
knowledge of the other, then the OTF can, like the spread function, be used to obtain all the 
imaging characteristics of the optical system. It is typical of good optical systems that phase 
variations are significant only when the MTF is small, which is usually for the higher spatial 
frequencies. Then the imaginary component of the OTF is quite small and the inverse 
Fourier transform may be satisfactorily determined using only the MTF. Because the MTF is 
the magnitude of the OTF, it is always positive. The spread function obtained from the 
inverse Fourier transform of the MTF must then be a symmetrical function. Conversely, an 
experimentally determined asymmetry in the spread function indicates the presence of 
non-negligible phase distortion. 

The simplest one-dimensional object is an illuminated knife edge, mathematically a step 
function. Using Eq. (12) results in the following: 

I(x,) = f ~ S ( x  )clx o (25) 

where the integration limit, x, locates the edge of the step function. Assuming that xo and x, 
are dimensionally the same (unity magnification), then differentiation of the image 

d [ l ( x , ) ] / d x  = S(x o) (26) 

shows that the slope of the trace of an image of a knife edge is equal to the line spread 
function. 

The relationships of the I~oint, line, and step function flux density mapping are now 
examined. Because of the impractically low energy levels implied by mapping a point source 
with a point aperture, S(xo, Yo), cannot be directly obtained. Larger apertures require that 
the flux measured be the result of integrating over the receiving aperture area. In other 
words, S(xo, Yo) is buried in an integration mapping. Therefore, let the point-image 
characteristic P(wx) be defined as the flux contained within a varyingly wide slit, Wx, of 
infinite length about the center of a point input function. Equation (12) becomes 

r"'" P(~ ) = S(x ,yo )dx odv ° 
' ¢-w ~/~ ( 2 7 )  

if the input field is a line source that is characterized by a constant flux along the length of  
the line (assume the y direction), the flux density of the line source is given by 

LCx~) = -,/T. S(x°" y°) dyn (28) 

14 
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Similarly, when the input field is a step function, the flux density is 

D ( x i )  = I x  f 2  S(xo,yo) dxodyo (29) 

The relationship between these functions is 

l w /2 
Pf , , . x )  _ I ) (w~,12)  - I) (-v.. ./2) = L ( x )  dx (30) 

' Wx/2 

which shows that the point image characteristics can be obtained from the point, line, 
variable width line, and step function sources. Specifically, the transform characteristics of a 
line source are given in terms of the system's response to a step function. This equation 

provides the basis on which the holographic line spread functions have been determined. 

4.0 EXPERIMENTAL PROCEDURE 

The result of Eq. (26) has only limited direct application because when a knife edge 

image is scanned, the edge trace incorporates the line spread function of both the optical 
system and of the scanning system. Attempts to separate the respective line spread functions 
would require the deconvolution process and its attending difficulties. However, the edge 
trace slope obtained when the scanning system traces an illuminated knife edge directly is, by 

Eq. (26), exactly the line spread function of the scanning system. 

Because of the necessity for deconvolution in experimentally obtaining the line spread 
function of a holographic system, the transform function analysis technique [Eq. (14)] was 

used instead. Briefly, the method is as follows: A holographic system is used to obtain an 
image of a knife edge which is then recorded on film. A microdensitometer is used to obtain 
the edge traces of the knife edge image on the film plate. This trace includes the effects of the 
spread functions of both the holographic system and the microdensitometer. To eliminate 
the microdensitometer effects, an edge trace of the knife edge itself was also made. From the 
edge traces, the MTF and PTF of the holographic and the scanning systems are obtained. 

The MTF of the holographic system without the microdensitometer effects is obtained 
[analogous to Eq. (14)] by dividing the image edge trace MTF by the knife edge trace MTF. 

The PTF of the holographic system minus the microdensitometer contribution is obtained 
by subtracting the PTF of the knife edge trace from the PTF of the image trace. The derived 

MTF and PTF of the holographic system are then used to obtain the real and imaginary 

components of the OTF. These, in turn, are used to find the line spread function (LSF), 

which is the inverse Fourier transform of the OTF. 
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The method of  obtaining the MTF and PTF is a graphic technique described by Scott et 

al. (Ref. 21), and the principles on which it is based are discussed by Shack (Ref. 22). To 

proceed, note that Eq. (22) states that a linear system operating on a sinusoidal field input 

will result in a sinusoidal field output  that is changed by a factor corresponding to the 

Fourier transform of  the impulse response function. A similar relationship exists when the 

input function is a periodic square wave. The square wave can be expressed in terms of  its 

sinusoidal Fourier series components.  Each component  is then operated upon independent 

o f  the other components and the results are summed to give the system square wave response 

function. The square wave response function 9(fx) is, hence, expressed by 

1 F.(3fx ) )- _ l..(Sfx ) - . . ,  (31) ~l'(f) = ~ ;'(f ) -  3 5 

where for notational convenience the Fourier transform of  the spread function in one 

dimension given by (xo, xo/3o . . . . .  Xo/n) has been written as 

f.~{s(,,,,.,,~} = r ( ,  f ]  (32) 

Finding the components of  Eq. (3 !) is somewhat involved. Consider an optical input to 

the linear system [Eq. (12)] that is a square wave field with periodicity o f  2t~ in the xo 

direction. Because there exists no Yo variation, the point spread function is replaced by the 

line spread function 

fa.~, 
I(x ) = L(x,)O(x i - x  o)dx ° (33) 

Expanding further such that the maximum amplitude of the square wave is centered at the 

origin, the image at x, = 0 is expressed by the expansion, 

J_ 
a /  2 

l ( x , - : O )  = I , (x  o) clx o 
a / . ' )  

+ f 5a:." 2 
• Sa;' 2 

t fga:" 2 
~ - - 9  a:. '  '2 

- '1 -  • • . 

This, together with Eq. (30), results in 

f 
3 a," 2 

I _ ( x , , ) dx  o - I.(x o)dx o 
~-- 3 a/' 2 

f 7 a:"2 l.,(x o)dx,- I,(, )dx o 
- 7 a /  2 

(34) 

°f,, {  >oJ I m ~ ( x l  = 0 )  = D - ' - - (35) 
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The limit N is arbitrary. N is chosen to ensure that further terms in the series do not 

contribute significantly to the result. Equation (35) succeeds in describing the square wave 
input in terms of a step function response. 

By a similar derivation, when a minimum of the square wave field is centered on the 
origin, 

I m l  n (x i = O )  D - - - , .  
n ---- ( 3 6 )  

Analogous with Eq. (23), the cosine turn of the square wave response function is 

tit ( f x )  ( l , n a x  t l rai  n ) c = , - I m i n / l m a x -  (37) 

= --]  + 
-,, {[ 
~ ' 0  ( - 1 ) n  D ( .  

n ~  

+ I/2) a] -D F-.t-1/2) a]} 

Thus, by measuring the amplitude in the image response of a step function at points 

x, = (n + l/2)t~, one obtains the square wave response ~I'¢(fx = 1/2or). The full spectrum of 
~'c(fx) is derived by changing t~ and repeating the measurements. 

Figure 2 shows a generalized conception of a step function response and the interval 

spacing used to determine xI, c(l/2t~). The heavy line sections correspond to the intervals in 
Eq. (35) and the dashed line section to those in Eq. (36). The interval D(nt~/2) - D[(n - 

2)t~/2] becomes zero as n becomes large, thereby providing the convergence of the series 
expressed in Eqs. (35), (36), and (37). 

From ~I'c(fx) the sine wave response function can be obtained by inverting Eq. (37). The 
inversion process is possible because the series is not actually infinite but terminates at a high 

frequency limit determined by the aperture of  the measuring instrument. Practically, the 
high frequency limit is specified by the shortest interval with which the step function 

response curve can be measured. Beginning with the high frequency limit, the cutoff 
frequency, fo then between fc and fc/3, the cosine wave response is given by 

Between fc/3 and fc/5, 

F c ( f  ) -_ n_ q~ ( f )  (38) 
4 

F' (f.~) = 

and between fc/5 and fc/7, 

1 F (3f x) (39) % (fx + 

~, 1 F (3f) ~ F (5 f  x) (40) Fc(f~) = 4 qJ~ (f~) +- -- 3 c 5 c . 
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Figure 2. Conceptualization of a linear system response to a 
step function input, 

and so on. The low frequency limit is generally quite obvious since systems with 

a d-c response become Fe(fx - 0) -- 1, whereas those without a d-c response become 
F¢(f  - O) - -  O. 

The sine term of  the square wave response function is derived analogously as 

I I ~ s ( f x =  t . ."2a)  = - 1  t- 2.." D ( N a ) - D ( - N a )  ( - l )  n D ( n a ) - D ( - n a )  
II  = 

(41) 
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The sine wave response function Fs(f~) is found in a like manner from Eqs. (38), (39), and 
(40). The low frequency limit is always F~(fx - 0) -- 0. 

The modulation transfer function, MTF, is given by 

]xrrl r - [i.'~.(f ). F'2(fx,] ~ ; . ~  (42) 

and the phase transfer function, PTF, by 

From F(f~) = Fc(fx) + i F~(f~), the line spread function, L(xo), can be computed by 
numerical integration of the inverse Fourier transformation of F(fx). When symmetry can be 

assumed, the point spread function, S(xo, Yo), is the surface revolution of L(xo) with an axis 
through Xo = O. 

5.0 EXPERIMENTAL RESULTS 

The somewhat convoluted processes described above were applied to a holographic 
system by obtaining holographic images of a knife edge using the off-axis recording mode. 
The angle between the beams was 7 deg, and the knife edge (a razor blade) was 35 cm from 
the holographic recording plate (Agfa Gaevert 10E75). The object and reference beams were 
collimated plane waves; their intensity ratio was unity. To facilitate correct alignment of the 

hologram for the reconstruction, the hologram also contained the holographic recording of 
a pinhole which was precisely in the same plane as the knife edge. During the reconstruction, 
the angular alignment of  the hologram was adjusted until the reconstructed pinhole image 

showed the least amount of aberration. This was a much more sensitive method than using 
the knife edge image to judge the alignment. To secure the best focus during the recording of 

the reconstruction, both the recording film plate and the focal position of the real image 

were precisely located through a microscope. The pinhole image was used to determine the 
focal plane. A JarrelI-Ash Console Comparator Microdensitometer was used to trace the 
film recording of the reconstructed knife edge image. The tracing slit was adjusted by the 

instrument guage to an indicated 2-#m width and 1.2 mm length; the tracing speed was 1 
mm/min.  

To emphasize the aperture effect in the reconstructed image, two holographic cases were 
investigated which differed only in hologram size. One hologram (to be referred to as the A 

hologram) was 2.4 cm in diameter, this value chosen as representing the nominal hologram 
size requirements. In anticipation of a broader spread function, the other hologram (the B 

hologram) wa,~only 0.75 cm in diameter. In both cases, the geometrical image of the knife 
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edge was near the center of the hologram. Obviously, these parameters are such that the best 

resolutions possible by the holographic systems are not realized. Rather, the degrading 

effects of the long reconstruction distance (35 mm) and of the aperture limiting are 

emphasized. 

Figure 3 shows the microdensitometer traces of a knife edge (a razor blade) and the 

reconstructed A and B hologram images of the knife edge. The traces have been normalized 

to remove the effects of the unexposed film emulsion absorption. Obviously, none of the 
traces are symmetrical, indicating the occurrence of phase distortion. Some sense of  the 
image degradation caused by the holographic system is obtained by noting that the slope of 
the reconstructed image traces is not as steep as that of the knife edge trace, that the contrast 
between the clear and opaque fields is not as strong, and that the slope of the traces is not 

always positive. According to Eq. (26), this implies that regions exist in which the spread 

function has negative values. 
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Figure 3. Microdensitometer traces. 

Figure 4 shows the MTF and PTF of the microdensitometer obtained from the direct 

tracing of the knife edge. Some characteristics pertinent to the technique of edge trace 
scanning can be noted from these curves. The variation of the PTF significantly away from 
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Figure 4. Modulation and phase transfer functions of the microdensitometer. 

zero values indicates the presence of  phase distortion in the microdensitometer system. The 
distortion may have resulted from defocusing and/or aberrations of  the microdensitometer 
optics, angular misalignment in the slit orientations, or damaged edges of  the slit. The 
microdensitometer was not disassembled to check for physical damage; edge integrity of  the 
slit jaws was assumed. Geometrical alignment of  the slit-trace geometry is performed 
visually on the JarrelI-Ash microdensitometer, and an orientation of  better than within one 
degree is easily attained. The probable cause of  the PTF variations is a slight defocusing of  
the microdensitometer optics. 

Because the MTF decreases rather gradually, a clear cutoff frequency is not apparent. 
The transfer function of  a microdensitometer slit is given approximately (Ref. 21) by 
sine (~'wf,), where w is the effective width of  the slit. The use of  an estimated cutoff spatial 
frequency of  85 to 100 ( l /mm) suggests an effective slit width of  l0/zm to 12 #m. The 
disparity between this width and the instrument setting of 2 #m implies a large discrepancy. 
A similar problem was addressed by Jones and Coughlin (Ref. 23), who found that 
correction for the microdensitometer scanning of  photographic images by dividing the MTF 
of the photographic image by the microdensitometer MTF resulted in an "overcorrection" 
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at the higher spatial frequencies. The), developed the more exact but also more difficult 
technique of incorporating a microdensitometer correction function into the data reduction 
analysis. As part of their technique, the experimentally determined microdensitometer 
spatial frequency is truncated at a value corresponding to its 0.1 MTF value. Smaller values 
are not considered sufficiently reliable. Truncation of the MTF at the 0.1 value does not, of 
course, allow a cirect comparison of the effective slit width indicated by the spatial 
frequency cutoff with the actual slit width used. Nevertheless, the overcorrection effect 

satisfactorily explains the apparent discrepancy noted above. 

Because of the large number of arithmetic computations involved, the use of a 
microdensitometer correction function is not practical without extensive computer 

programming, in the present study, time limitations prevented this; however, the work of 
Jones and Coughlin shows that including the microdensitometer correction function 

improves the details but does not significantly change the overall characteristics of the 
results. 

Figure 5 reinforces this observation. The two sets of data are the line spread functions of 

the microdensitometer derived from the transfer function (the solid lines) and those derived 
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Figure 5. Normalized line spread function of the microdensitometer. 
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from a direct calculation of  the slope of  the knife edge trace (the circles), normalized for 
unity at the peak of  the curve. The high degree of  correlation justifies using the transfer 
function method of  obtaining the line spread function, and the correlation also increases 
confidence in the results obtained for the holographic systems. 

Figures 6 and 7 are the MTF and PTF of the A and B holographic systems, respectively. 
The cutoff frequency of  the MTF curves cannot be accurately compared, partly because the 
A system MTF was extrapolated (the dashed line portion) from the trend in the curve, partly 
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because of  the measurement uncertainty at higher spatial frequencies. The modulation of  
the A system is considerably larger past about fs = l0 ( l /mm) than that of  the B system; the 
greater area under the MTF curve in the A system loosely implies a better quality of  that 
imaging system (Ref. 18). 

Figures 8 and 9 are the experimental line spread functions minus microdensitometer 
effects of  holographic systems A and B, respectively. The shape of  the line spread functions 
in their center portion is as expected from the sinc 2 [kx3L/z2] distribulion of  Eq. (9). The line 
spread functions are obtained from inverse Fourier transformation of  the OTF by numerical 
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Figure 7. Modulation and phase transfer functions of the 
B Hologram minus the microdensitometer effects. 

integration. Contributions of  the higher spatial frequencies of  the OTF affect the line spread 
function width such that erroneously large high-frequency contributions that result from the 
microdensitometer overcorrections make the line spread functions somewhat too narrow. 
Thus, Figs. 8 and 9 imply image resolving capabilities of  the holographic systems that are 
perhaps better than their actual capabilities. 

6.0 DISCUSSION 

The holographic system has incorporated within it the film effects both during the 
holographic recording and while making a permanent recording of  the reconstructed image. 
These steps introduce nonlinearities because of  the nonlinear nature of  film recording 
parameters. While the nonlinearities do not detract greatly from the reconstruction fidelity 
of  the holographic image (Ref. 11), this is not the case when recording that image. The image 
field consists of  the illuminated region which, like the original step function, rather abruptly 
goes to zero intensity. The greatest demand made on the film is in recording this transition 
region, yet it is precisely at the transition region that the nonlinearities are most prominent. 

24 



A EDC-TR-80-41  

Very low levels of illumination in the shadow region of the step function either will be below 
the threshold of the film sensitivity or will nonetheless be attenuated by the slow threshold 
response of the film's Huerter-Driffieid sensitivity curves. Either way, the effect is that the 

recorded image shows a somewhat steeper response curve than would be expected of the 

holographic image (actually, of an image made by any optical system) without the final 
recording step. 

The synergistic effect that increases the slope of the response function is analogous to the 

case of lens correction through compensating aberrations. This effect also emphasizes one 
limitation of the transfer function approach to optical analysis. Simply multiplying the 

component MTF's of  a system to obtain the overall system MTF is not sufficiently versatile 

to describe the image characteristics resulting from compensating effects. 

Consequently, the line spread functions of Figs. 8 and 9 might be expected to correlate 
only qualitatively to the theoretical model expressed by Eq. (9); however, the correlation is 
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quite good. Equation (9) predicts the widths for the parametric conditions of systems A and 
B, at half-height of  the line spread function, to be about 5.6 gm and 17.8 #m, respectively. 

Figures 8 and 9 show the half widths of  about 10 gm and 15 #m as well as the obviously 

increased spread function of  the B system over that of the A system. Application of  the 

Sparrow resolution criterion implies that line groups with line widths and separations of  

about the same size should be observed. The line groups on a resolution test target observed 

visually from reconstructions of  holograms that were recorded with the same distance and 

size parameters as holograms A and B could be resolved for line widths of  8 #m and 28 #m, 

respectively. In these cases the resolution is dependent on subjective interpretation of  the 

images. This, in addition to the resolution restrictions of  the microscope-eye combination, 

again gives a qualitative nature to comparisons with the above results. Nevertheless, the 

theoretical predictions, the experimentally obtained line spread functions, and the visual 
observations all gave results that are comparable to within a factor of  two. 
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7.0 S U M M A R Y  

The experimentally obtained line spread function of the real image reconstruction of a 

holographic system is presented. Two cases which differ in the apertured size of the 

hologram are shown. The report outlines the theoretical derivations of the holographic 
reconstruction of point and line spread function and indicates the multiparametric nature of 
these functions. The application of the spread functions to optical linear systems is 

discussed, and the linear systems approach is used to detail an experimental technique for 
obtaining the line spread functions. Although the theoretical and experimental spread 
functions compare only within limitations (for the reasons given in the discussion section), 

the resolution of the system implied by both results is nonetheless similar. Furthermore, the 

shape of the central portion of the experimental line spread functions is as would be 

expected from the theoretical sine(x) distribution. Uncertainties in the experimental results 
that are caused by the experimental procedure's limitations are discussed. 
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